About Me
My primary interest lies in learning theory where convex analysis, probability theory and information theory help serve machine learning community. I am also passionate about applying machine learning to nontrivial realworld problems where careful combination of theory and practice is essential.
Currently, I am with Monash University and National ICT Australia (NICTA) where I work with Dr. Reza Haffari and Prof. Wray Buntine.
I served as a teaching assistant in Leiden University and research employee at Center for Mathematics and Computer Science (CWI) in the Netherlands where I worked with Prof. Peter Grunwald as part of informationtheoretic learning group.
Earlier, I did my Master's in computing science at Simon Fraser University (SFU) in Canada where I worked on convex optimization, graphical models and applications to computer vision under supervision of Dr. Greg Mori and
Prof. Ghassan Hamarneh.
Selected Publications

A Bennett Inequality for the Missing Mass.
(submitted)
[draft]


Novel Bernsteinlike Deviation Bounds for the Missing Mass. 31st Conference on Uncertainty in Artificial Intelligence (UAI), 2015.
[pdf]


Novel Deviation Bounds for Mixture of Independent Bernoulli Variables with Application to the Missing Mass.
(submitted)
[draft]
Summary: This is an instance of variance control problem where we shrink the variance while controlling the magnitude of terms. We improve stateoftheart for both upper and lower deviation bounds on missing mass in the case of small deviations. We introduce a thresholding mechanism that helps reveal high concentration of missing mass around its mean for small deviation sizes by harnessing worstcase distributions that may otherwise inflate the variance. Interestingly, Lambert function plays a crucial role in our thresholding procedure.


A Large Margin Framework for Single Camera Offline Tracking with Hybrid Cues.
Computer Vision and Image Understanding (CVIU), 2012.
(with Ferdinand Stefanus, Mani Ranjbar, ZeNian Li, Nicolas Saunier, Tarek Sayed and Greg Mori)
[pdf]
[more details]
Summary: We pose tracking as a structured inputoutput prediction problem. We devise a largemargin criterion for learning to combine static and dynamic information for tracking via trajectory optimization and build a system for automatic detection and tracking of pedestrians.

Research, Teaching and Training Experience
 Machine learning summer school (MLSS), La Palma (2012)
 Teaching assistant of statistical learning theory, department of statistics and mathematics, Leiden University (2012)
 Research Intern on convex optimization applied to machine learning at NUS/A*STAR (2011)
 Research assistant in machine learning applied to computer vision, vision and media lab (VML), department of Computing Science, Simon Fraser University (20092010)
 Teaching assistant of CMPT412 (computer vision), department of computing science, Simon Fraser University (2008)
 Teaching assistant of CMPT418 (computational neural/cognitive architectures  special topics in AI), department of computing science, Simon Fraser University (2008)
 Teaching assistant of technical writing for mathematics and LaTeX typesetting, department of mathematics, University of Tehran (2008)
 Teaching assistant of design and analysis of algorithms, department of computer science, University of Tehran (2007)
Relevant Courses
 CS 540: Probabilistic machine learning (Kevin P. Murphy, University of British Columbia)
 STAT 890: Spatial statistical methods (Peter Guttorp, University of Washington)
 CMPT 882: Recognition problems in computer vision (Greg Mori, SFU)
 STAT 804: Time series analysis (Richard A. Lockhart, SFU)
 CMPT 726: Machine learning (Greg Mori, SFU)
Useful Books and Resources
 Concentration Inequalities: A Nonasymptotic Theory of Independence
 The CauchySchwarz Master Class: An Introduction to the Art of Mathematical Inequalities
 Prediction, Learning and Games
 The Elements of Statistical Learning
 Convex Optimization
 Machine Learning: a Probabilistic Perspective
 (Painless) Numerical Linear Algebra
 Machine Learning (Theory)
 Normal Deviate: Thoughts on Statistics and Machine Learning
 Handbook of Writing for the Mathematical Sciences
Software for Optimization and Machine Learning
 CVX: Matlab Software for Disciplined Convex Programming
 Matlab Software for Machine Learning by Kevin Murphy and His Students
 Mark Schmidt's Matlab Software for Optimization and Machine Learning
Good Stuff
 I love ClimBinG
 PhotoGraphYt
 Green Peace
Favorite Quotes
"Everything was impossible until someone did it.", Unknown
"If you are not falling, you are not trying.", Sonnie Trotter
"You don't have to believe in God, but you should believe in The Book.", Paul Erdos
"Success consists of going from failure to failure without loss of enthusiasm.", Winston Churchill
"A mistake proves that someone stopped talking long enough to do something.", Phoenix Flame
"I would rather die of passion than of boredom.", Vincent van Gogh
"The best people possess a feeling for beauty, the courage to take risks, the discipline to tell the truth, the capacity for sacrifice. Ironically, their virtues make them vulnerable; they are often wounded, sometimes destroyed.", Ernest Hemingway
"There was nowhere to go but everywhere, so just keep on rolling under the stars.", Jack Kerouac
Copyright note: The articles in this page are presented to ensure timely dissemination of scholarly work and may not be (re)posted or published in whole or in part without explicit permission from the author(s).